Two New Phenolic Glycosides from the Roots of *Rhododendron molle*

Guan Hu BAO¹, Li Quan WANG¹, Kin Fai CHENG², Guo Wei QIN¹*

¹Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 ²Deprtment of Chemistry, University of Hong Kong, Hong Kong

Abstract: Two new phenolic glycosides, everninic acid methyl ester-2-O- β -D- xylopyranosyl-(1 \rightarrow 6)- β -D-glucopyranoside **1** and 7-hydroxy-5-methoxyphthalide-7- β -D- xylopyranosyl-(1 \rightarrow 6)- β -D-glucopyranoside **2** were isolated from the roots of *Rhododendron molle* G. Don. Their structures were determined by spectral evidence including 2D NMR techniques.

Keywords: *Rhododendron molle*, Ericaceae, everninic acid methyl ester-2-O- β - D-xylopyranosyl-(1 \rightarrow 6)- β -D-glucopyranoside, 7-hydroxy-5-methoxyphthalide-7- β -D-xylopyran-osyl-(1 \rightarrow 6)- β -D-gl ucopyranoside.

Rhododendron molle G. Don (Ericaceae) has long been used in China for insecticidal and medicinal purposes¹. Many diterpenes and phenolic compounds have been isolated from the fruits and flowers of this plant before^{2,3}. However, chemical constituents of the plant roots were never reported. As a part of our study on the active principles of traditional chinese medicines, we investigated the chemical constituents of the roots of *R*. *molle*. Two new phenolic glycosides **1** and **2** were isolated. This paper describes the isolation and structure elucidation of **1** and **2**.

Compound 1 was obtained as amorphous powder, possessing a molecular formula of $C_{21}H_{30}O_{13}$ by FABMS data (m/z 513 [M+Na]⁺, 491 [M+H]⁺) in conjunction with its ¹H and ¹³C NMR data (Table 1). The IR spectrum showed the absorption bands of hydroxyl (3470 cm⁻¹), aromatic (1608, 1496 cm⁻¹) and ester carbonyl (1710, 1045 cm⁻¹) groups. Acidic hydrolysis of **1** afforded D-glucose and D-xylose, detected by co-TLC with authentic samples. The ¹H NMR spectrum showed the signals for a pair of meta-coupled aromatic protons ($\delta_{\rm H}$ 6.51, d; 7.24, d, each 1H J = 2 Hz), an aromatic methyl ($\delta_{\rm H}$ 2.32, s, 3H) and two methoxyls ($\delta_{\rm H}$ 3.73, s; 3.86, s, each 3H). Besides one D-glucose and one D-xylose units, the ¹³C NMR and DEPT spectra revealed 10 carbons, representing a 1, 2, 4, 6-tetra-substituted aromatic ring ($\delta_{\rm C}$ 118.18 s, 157.46 s, 101.58 d, 161.90 s, 110.18 d, 138.22 s), a methyl ($\delta_{\rm C}$ 19.93 q), a methoxyl ($\delta_{\rm C}$ 55.46 q) and a benzoic acid methyl ester ($\delta_{\rm C}$ 168.8 s, 51.95 q). The substituted pattern as 2-glycosyl-4-methoxyl-6-methyl benzoic acid methyl ester (everninic methyl ester) was deduced by HMBC experiment (Table 2), in which the important correlation was observed between H-1' of D-glucose ($\delta_{\rm H}$ 5.47) to C-2 ($\delta_{\rm C}$ 157.46), suggesting that the D-glucose should be connected to C-2 with β -configuration due to larger coupling

^{*} E-mail: gwqin@yahoo.com.cn

Guan Hu BAO et al.

constant ($J_{1',2'} = 7.6$ Hz). The selected HMBC correlation was shown in **Figure 2**. The NOESY correlation between H-3/OC<u>H</u>₃ (3.73, s, 3H), H-3/H-1', H-5/OC<u>H</u>₃ (3.73, s, 3H), H-5/H-9 (2.32, s, 3H) also confirmed the above deduction (**Figure 1**). In comparison of ¹H and ¹³C NMR data of sugar moiety in **1** with that of methyl- β -D-glucopyranoside⁴, the downfield shift of C-6' was observed due to glycosylation, indicating that D-xylose should be linked to C-6' of the D-glucose. The HMBC spectrum showed the cross peak between H-1" ($\delta_{\rm H}$ 4.90, d) of xylose and C-6' ($\delta_{\rm C}$ 70.20 t) of glucose, confirming the 1 \rightarrow 6 linkage of the D-xylose to the D-glucose. The β -configuration of D-xylose was also suggested by coupling constant of the anomeric proton ($\delta_{\rm H}$ 4.90, d, $J_{1",2"} = 7.5$ Hz). Thus compound **1** was elucidated as everninic acid methyl ester-2-O- β -D-xylopyranosyl-(1 \rightarrow 6)- β -D-glucopyra noside.

Compound 2 was obtained as amorphous powder, possessing a molecular formula of $C_{20}H_{26}O_{13}$ by FABMS data (m/z 497 [M+Na]⁺, 474 [M+H]⁺) and its ¹H and ¹³C NMR data (Table 1). The IR spectrum showed absorption bands for hydroxyl (3587, 3338 cm⁻¹), aromatic (1612, 1494 cm⁻¹) and α,β -unsaturated γ -lactone carbonyl (1726 cm⁻¹) groups. Acidic hydrolysis of 2 afforded D-glucose and D-xylose, detected by co-TLC with authentic samples. There were striking resemblances between ¹H and ¹³C NMR data (Table 1) of sugar moiety in 2 and 1, indicating that 2 also contained a β -D-xylopyranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl group. Besides sugar moiety, ¹H, ¹³C NMR and DEPT data of 2 revealed the signals for a 1, 2, 3, 5 tetra-substituted aromatic ring ($\delta_{\rm H}$ 6.51, s, 7.22, s, each 1H; $\delta_{\rm C}$ 151.80 s, 107.42 s, 158.06 s, 102.91 d, 166.83 s, 100.24 d), a methoxyl ($\delta_{\rm H}$ 3.79, s, 3H; $\delta_{\rm C}$ 56.10 q), oxygenated methylene ($\delta_{\rm H}$ 5.13, s, 2H; $\delta_{\rm C}$ 68.77 t) and a α,β -unsaturated γ -lactone carbonyl ($\delta_{\rm C}$ 168.83 s). On the basis of various 2D NMR techniques, the aglycone was determined as 7-hydroxyl-5methoxylphthalide and sugar moiety connected to 7-hydroxyl group. The important HMBC correlation (Table 2) was observed between H-4/C-5, H-4/C-8, H-4/C-3, H-6/C-7, H-6/C-8, OCH₃/C-5 and H-1'/C-7, respectively. The selected HMBC correlation were shown in Figure 2. The NOESY correlation between H-4/OCH₃ (3.79, s, 3H), H-4/H-3 (5.13, s, 2H), H-6/OCH₃ (3.79, s, 3H) and H-6/H-1' were also observed (Figure 1). Thus, compound 4 was elucidated as 7-hydroxy-5-methoxyphthalide-7- β -D-xylopyranosyl-(1 \rightarrow 6)- β -D-glucopy ranoside. All the ¹H and ¹³C NMR signals were unambiguously assigned by 2D NMR experiments.

Figure 1 Significant NOESY correlation for 1 and 2

No. C	$\delta_{\rm H}$ (J, Hz)		$\delta_{\rm C}$	δ _C		
	1	2	1	2		
1			118.18 s	168.83 s		
2			157.46 s			
3	7.24 (d, 2)	5.13 (s)	101.28 d	68.77 t		
4		6.51 (s)	161.90 s	100.24 d		
5	6.51 (d, 2)		110.18 d	166.91 s		
6		7.22 (s)	138.22 s	102.91 d		
7	3.86 (s)		51.95 q	158.06 s		
8			168.76 s	107.42 s		
9-CH ₃	2.32 (s)		19.93 q	151.80 s		
OMe	3.73 (s)	3.79 (s)	55.46 q	56.10 q		
Glc-1'	5.47 (d, 7.6)	5.78 (d, 7.3)	103.58 d	101.80 d		
2'	4.18 (m)	4.36 (m)	74.79 d	74.28 d		
3'	4.27 (m)	4.30 (m)	78.39 d	78.53 d		
4'	4.23 (m)	4.23 (m)	71.06 d	71.00 d		
5'	4.20 (m)	4.35 (m)	77.46 d	77.57 d		
6'	4.77 (m), 4.30 (m)	4.78 (m), 4.33 (m)	70.20 t	69.95 t		
Xly-1"	4.90 (d, 7.6)	4.90 (d, 7.6)	106.11 d	106.16 d		
2"	4.00 (dd, 7.6, 8.5)	4.02 (dd, 7.6, 8.5)	74.93 d	74.94 d		
3"	4.12 (t, 8.5)	4.11 (t, 8.5)	78.20 d	78.22 d		
4"	4.19 (m)	4.23 (m)	71.20 d	71.07 d		
5"	4.30 (m), 3.63 (m)	4.30 (m), 3.61 (m)	67.11 t	67.13 t		

Table 1 ¹H and ¹³C NMR spectra data of **1-2** in pyridine- d_5^a

a. ¹H NMR recorded at 500 MHz and ¹³C NMR at 125 MHz

Table 2HMBC correlation for 1 and 2

No. H	1	2	No. H	1	2
3	C-4, C-2, C-1, C-5	C-8, 4, 1	3'	C-2', C-4'	C-2', C-4'
4		C-8, 6, 5,3	4'	C-6'	C-6'
5	C-1, C-3, C-4, C-9		5'		
6		C-5, 7, 8, 4	6'	C-5', C-1"	C-5', C-1"
7	C-8		Xly-1"	C-6'	C-6'
9	C-1, C-5, C-6		2"	C-1", 3"	C-1", 3"
OMe	C-4	C-5	3"	C-4", 2"	C-4", 2"
Glc-1'	C-2, C-5'	C-7	4''		
2'	C-1', C-3'	C-4', 3', 1'	5"	C-1", 4"	C-1", 4"

Guan Hu BAO et al.

Figure 2 Significant HMBC (H-C) correlation for 1 and 2

Acknowledgment

This work is supported by National Natural Science Foundation of China (Grant No. 30170104).

References

- 1.
- 2.
- J. S. Chen, S. Zhen, *Chinese Poisonous Plants*, Science Press, Beijing, **1987**, p.232. C. J. Li, L. Q. Wang, S. N. Chen, G. W. Qin, *J. Natural Products*, **2000**, *63*, 1214. Li, Q. Wang, G. W. Qin, *Natural Products Research and Development*, **1997**, *4*, 82. 3.
- 4. L. Bock, et al., Ad. Carbohydr. Chem. Biochem., 1983, 41, 27.

Received 3 July, 2001